
4

“

i
{
i

aoe

Emil nein Clie OER Ree Oe ANS Oa enn

ae enansnunensmnetnana

H
‘

i

eine cme ntmimtte

ZX Spectrum

Bie

EDIT CAPS LOCK TRUE VIDEO
GHEE

INV. VIDEO

YELLOW

¢

WHITE

— 7 ° _ eee -~ ra a easy i :

{ : i i

By i { } 5
‘ | | i
H H L H H ‘

; i j :
Ve: i

t i : ;
~ } 7 : : i

i

to ; H ‘

i ; i
: i :
: ; i i
od peed ed 4 eet | me nnmncinininnnn | a | ermine nes Leta uuucrins | amsctessemnesnemnnnmnne || mmnatheqenenctneneninnie

ome Cetin ete co seeeeaierseramanrerses I aceleemeeeeeeeationl ~ rntactecanecnennncnecnacnetieeteey, no “teenartemactartaiercennernesnes: pi empanseneasoene a : & od piece bu etonavannette Can snebnaner SORSSRNS pT RI ASAE TOEY,

‘

i ne :

Alia ea eS Se cereenerad aol Lcaeetumamreciencnnis: 3 amet _ tani mee NS, i i a ire 1 eecsncee Bee econo areneennememacncere tae

conus aren x ~

BEES! TERE
“mnnanmiminsnamanininimsnimimanni intetnintuentrennt emt

GRAPHICS DELETE
AES

= A LT Le]

% _gtaniviiiinan.

KNOWLEDGE We see how the
robot's senses may be combined to give it a
preates understanding of its environment

OVER SIXTEEN The Commodore 16 is the
successor to the Vic-20; we review this latest
addition to the budget-priced range of home
computers

BIG MACRO Lotus 1-2-3 isa heavyweight
spreadsheet for the more expensive micros
like the IBM PC and Apricot. However, its
working principles will soon filter down to
home micros

PERILOUS PURSUIT We continue to
develop our adventure game in LOGO by ~
looking at movement between locations and
the use of ‘perils’ such as poisonous snakes

IDENTIFICATION TO IMPULSE NOISE |
A weekly glossary of computing terms ©

(189

[84

Rercacced

nn : a ov oe : : : : ee
See aes Hi ii ik int i crt iit aa i a u i Seis

See | sasnes
==

if

i He
te
cand HH

L i

i

E

He
co estieesttt

Hh |

ce
Speiesveeetitee

= Ee
piriiatiinstnaitis

iH a ii

L _.

STORY LINE We develop a utility that will
format output to the screen in our two text-
based adventure games for the popular
micros

BREAK EVEN POINT Now that our
debugger program is almost complete, we
can begin to develop the remaining break-
point routines

SUM OF THE PARTS We revise all the
ground that we have covered and publish
appropriate circuit diagrams, before starting
a new and ambitious project

REFERENCE CARD We continue to list
extracts from the Z80 programmers’
reference card

INSIDE
BACK
COVER

00000000

ae

COVER PHOTOGRAPHY BY MARCUS WILSON-SMITH

In previous instalments of this series we
have discussed in depth the individual
senses that contribute towards a robot’s
‘intelligence’. Here we look at how these
senses may be combined to give the robot a
fuller understanding of its environment.

While examining the sensors that a robot may use
to gain some knowledge of the world in which it
moves, we have considered each type of sensory
input (sight, sound, touch) as if used in isolation.
This is a fair assumption if the robot has a single
sensor only but, in practice, the better robots will
have several. To understand its environment, the
robot must be able to integrate these sensory
inputs by using each one as a check upon the
others in order to build up a complete internal
model of its world. |

This is hardly surprising, because this — it seems
— is how humans work, too. Our senses do not
exist in isolation: we are constantly using the input
from one sense as a check on that from another
sense and the result is that we build up a very
complete picture of our environment. The best
example of this concerns the case studies of people
who were blind from birth but who have been

ise

Topping Up

Ee aces Reo

i 6 == The robot butler is programmed
to distinguish full and empty
glasses. By synthesising what it

Bn. te Bees

a ae 2

Ree
ee es

refills

given their sight through surgery. These patients
often surprise their surgeons with the speed at
which they can make full use of their vision. This is _
because blind people have a very good knowledge
of the world as a result of being able to touch
objects, to move around in the world and to hear
descriptions of the environment. Once they can
see, therefore, they are able to use this knowledge
and apply it to interpreting things they see.

If we are to get the best out of robots we must
allow for the interaction of their senses in just the
same way as a person’s. For example, a robot that
is designed to pick up objects may be able to pick
them up ‘blind’, but it could do much better if it
had a vision system because it could then locate
the objects even if they were slightly misplaced, or
at an angle other than the one the arm was
programmed to expect. To do this, the robot must
build up some kind of internal model of its
environment by using the inputs from all its
sensors. It must be able to look at the object and
recognise it, it must then position its end effector
and make the necessary calculations to pick the
object up.

The simplest illustration of this internal model is

THE HOME COMPUTER ADVANCED COURSE 781

sees on the tray, and the discrete
differences in mass between a

: full tray and an empty one, the
» W&@ pre {ee butler determines at what point

_ so . : it must return to the bar for

At Your Service .. .
We have created an imaginary
robot butler that must
synthesise a variety of sensory
inputs to ply its trade. Its
greatest problem is the fact that
the guests are moving
constantly, which means it must
update its internal model of the
Space accordingly

MIKE BROWNLOW

KEVIN JONES

Robot
Perception

4x INTERSECTION

In the illustration, with five

areas of knowledge, there is
one intersection of all five

circles, four different

intersections of four circles,

Intersection Interface
Robots usually have several
sources of knowledge available
to them: some are their pre-

_ programmed databases (of
common object silhouettes and
infrared signatures, for
example) some are experiential
databases (such as the robot’s
Current map ofits
Surroundings), and some are
sensory input channels (such as
proximity and shape of objects).
In the ideal case — when the
robot ‘knows its location and
‘understands’ its surroundings
— then the intersection of these
areas of knowledge should
uniquely identify any object in
the robot’s view

AREAS OF KNOWLEDGE

AREAS OF KNOWLEDGE

the levels of intersection until

a match is achieved; the
higher the level of
intersection, the more
trustworthy the inference

and so on. The robot checks
any object in view against the
five-times intersection, then

against each of the four-times
intersections, and so on down

used by the maze-solving robot (see page 772)
that uses sensors to work out the position of walls
in the maze, building up an internal, two-
dimensional map as it progresses. If we extend this
thinking to an arm, the map must be three-
dimensional. Add vision to the robot and the
three-dimensional map immediately acquires
colours, variations in brightness, and patterns that
no touch sensor could have detected. With some
measure of speech recognition, the robot adds
spoken information to its model of the world.

The problem confronting robot designers who
are trying to enable the robot to make sense of its
environment is that the world is not static and is
constantly changing. Therefore, the robot also
needs to be equipped with some means of allowing
for such change.

If we consider a robot that is programmed to
perform some simple task like stacking bricks, the
extent of this problem becomes clear. If the bricks
are of unequal size, they must be positioned one
on top of another very carefully and if the centre of
gravity of each brick moves outside the base area
of the bricks the whole pile will topple over. But

782 THE HOME COMPUTER ADVANCED COURSE

what knowledge does the robot have of the laws of
gravity? And if the pile does topple over, would it
understand what had happened and take the
necessary action?

PROBLEM SOLVING
There are two main approaches to this pope,
The first is to program the robot with data that
includes a prescribed course of action for any
eventuality. This would obviously limit the robot’s
understanding to certain clearly-defined tasks.
The~ brick-stacking robot would thus be
programmed with instructions to ensure that each
brick was placed exactly on top of the brick
underneath, with the centre of gravity of one
directly above the centre of gravity of another.

The second approach is that advocated by those
who argue that the only way a robot can ever
understand its environment is by learning about it
for itself. This is a field of computer science known >

-as learning or heuristics. With this approach, the
robot is programmed to perform a particular task
and is provided with feedback, either from a
person or from its own sensor, which will tell it how
well it has done. With reference to this feedback,
the robot will modify its own internal program —
its own model of the world — in order to improve
its performance and build up a ‘reference library’
that will help it cope with future tasks. The maze-
solving robot acts in this way when it tries to find
the best way out of a maze. By using its sensors, it
can detect any blind alleys and will then take the
necessary action by retreating back up the path
and trying a new one. Unfortunately, there is no
single learning program that may be used
whenever a robot needs to learn a task.

Once the robot has ‘learnt’ the necessary lesson,
it needs to store whatever this is as a computer
program. This task is known as knowledge
representation. ‘Traditionally, the robot's
knowledge may be stored as the lines of code that
comprise an ordinary computer program. But
artificial intelligence techniques have led to other
approaches. There is a wide range of techniques
in use, but the most common include production
rules, semantic nets and frames.

Production rules are in the form of IF. . .THEN
constructs and are simple statements of fact. So, a
robot may store its knowledge in the form: IF there
is a brick wall in front of you THEN you cannot go
forwards. There can be a whole sequence of rules
of this type — they have the advantage of being
easy to write and easy to understand for the
programmer who is writing the program. The snag
is that the robot has to understand them too — it
needs what is often called an inference engineto be
able to interpret these rules into a course of action.
Programs using the production rules may be
written in a conventional language, such as BASIC,
but are more commonly written in a declarative
language, such as PROLOG, which is better designed
to handle this sort of knowledge. This is because,
unlike the traditional languages, declarative
languages do not execute their instructions one at

. on —

a time. Instead, the program continuously looks
out for a given set of circumstances to which one or
more of the rules might apply. When this happens,
that particular rule ‘fires’ and is executed, which
may in turn lead to other rules being fired.

Semantic nets are a form of graph structures
used to represent knowledge, and it is possible to
think of them as just a network of relationships
between various items of knowledge. The reason
they are called semantic nets, rather than simply
nets or graphs, is because the individual linkages
can have some meaning in their own right. Instead
of an arc linking two nodes being merely an arc, it
can be an arc that indicates the existence of a
special kind of relationship between those two
nodes. So, a node labelled ‘table’ may be linked to
a node labelled ‘furniture’. In this example, the
relationship is that a table is a type of furniture —
SO we can call the linkage a ‘type’ linkage.

This kind of knowledge representation can be
programmed in a conventional language. You
might try it using BAsic and representing the
various nodes and linkages by string variables.
But, typically, one of the languages of artificial
intelligence is more commonly used — such as Lisp
— because this makes it much easier to express
these complex named relationships.

QUESTIONNAIRE
Frames are rather like a blank questionnaire that is
specially designed for each type of situation a
robot might encounter. The idea is very easy to
understand and could be readily programmed in
BASIC using simple two-dimensional string arrays
— one dimension for the ‘question’ and another
for the ‘answers’.

In this approach, the robot is not considered to
have complete knowledge of a situation until it has
filled in every item on the questionnaire. Only then
may it take the appropriate action. A refinement
to this method is to have a large selection of
different frames available to the robot. One of the
tasks of the robot is then to select the appropriate
frame for a given situation.

An important aspect of knowledge
representation that we have touched on briefly is
the part played by the programming languages
themselves. Lisp, for example, being a list
processing language, is particulary appropriate for
this kind of approach to the storage and retrieval of
data. The choice of language will, therefore, make
it easier to represent knowledge in particular ways.

In this instalment we have looked at a number
of methods by which robots can be programmed
with a fuller understanding of their environment.
This is still the subject of considerable research in
the computer science departments of universities
throughout the world and the key elements are the
use of sensors, feedback, learning and knowledge
representation. In the next instalment of this series
we will take a look at a different approach —
computer simulation — in which computers are
simply programmed to imitate real-life activities.

SRI

SBS

S505 O50

SSS

OL5O505C

_ Data entering a robot's

%

q QI

aM,

PAPA ANE LG EE EN war arara OOOO. OS as

~y,

CEEOL AR

(wageehenomectneety 4

© O

Parallel Lines
processing system through
sensors must be processed
sufficiently quickly to allow an
acceptably speedy reaction to
the incoming data.

The length of the incoming
data queue is determined by
the complexity of the
algorithm interpreting the data
and the processing speed. The
volume of data generated by a
sophisticated robot may be
such that an eight-bit
processor such as the Z80 or
6502 cannot cope, causing
lengthy data queues to build
up. The solution to this
problem lies in the use of 16-
or 32- bit processors that can
process twice or four times as
much data simultaneously

THE HOME COMPUTER ADVANCED COURSE 783

The Lotus Screen
The main menu in Lotus is ©

_ brought to the screen by
pressing the / key, as in VisiCalc

Macro Economics ’
Here is our range-naming macro
as it appears in the worksheet.
Macro instructions can carry ~

~ down acolumn, if necessary

modelling by looking at the use of keyboard
macros in 1-2-3, a worksheet’ with
integrated database and graphics functions
from the Lotus Development Corporation.

The spreadsheet programs we have examined so
far have been designed for home micros like the
BBC, the Spectrum, the Commodore 64 and the
Sinclair QL.These programs are necessarily
hampered by the limited amount of RAM
available for the program itself and the models
developed. Similar programs written for the IBM
PC, the ACT Apricot, and other business
machines can take advantage of large resident
memories and greater processing speed. As a
result, some of the most innovative modelling
programs can be run only on expensive machines
of this kind. An example is Lotus 1-2-3, an
integrated spreadsheet, database, and graphics
program, which we looked at briefly on page 644.

1-2-3 imposes considerable demands for
memory on a computer by the nature of its design.
Besides requiring enough RAM to handle the
code for its three main applications, it also needs
space for a worksheet with a theoretical maximum
capacity of 256 columns by 1,028 rows. Memory
is allocated to the worksheet only as needed but,
even so, early versions of Lotus 1-2-3 require a
minimum of 128 Kbytes simply to run, and later
versions demand at least 256 Kbytes. The costs of
a program like 1-2-3 and a system to run it are
extremely high, but the result for the user is a
program with a wide range of features. In this
article we will show you how to use one of 1-2-3’s
most interesting facilities, the keyboard macro.
But to understand macros, we must first examine
the way 1-2-3 works.

POWER-UP
When powered up, 1-2-3 displays ile Lotus
Access System, a set of commands for data
management. Placing the cursor on the first
choice, 1-2-3, and pressing Return loads the
worksheet into memory and prepares the screen
display. 1-2-3’s rows are labelled with letters and
the columns are numbered. As with Multiplan,
which we loooked at in our last instalment (see
page 764), 1-2-3 is menu-driven. The main menu
is displayed when you press the / key. From that
point on, menu options are selected either by
typing the first letter of the appropriate command
or by placing the cursor on the command and
pressing Return.

1-2-3 hasso many command options that there

784 THE HOME COMPUTER ADVANCED COURSE

BIG MACRO
are several layers of sub-menus. While this means
the user can use Lotus to perform literally
hundreds of tasks, it also means that some
operations require a large number of keystrokes
(see diagram). To illustrate this point, let’s look at
an example. 1-2- 3 allow you to name a cell or a
region of cells with an identifying label. When, you
want to act on the named region — including it ina
formula, for example — the name is used in place
of the cell reference, as follows:

A3-B3=C3 SALES — COST = PROFIT

cell references - name references

Naming regions simplifies and accelerates finding
things on a large worksheet. To name a group of
four cells in 1-2-3 requires the following
keystrokes:

/ — displays the main menu;
R(ange) — tells 1-2-3 that you are going to perform an
operation on a small group of cells, rather than the
entire worksheet;
N (ame) — the identified range of cells is to be given a

name;
C(reate) — prepares 1-2-3 to accept a name eand attach
it;
Type the NAME to be attached: “START”, for example;
Return to accept the active cell as the beginning of the
range;
Cursor right four spaces;
Return to accept the active cell as the end of the range.

Thus this process requires 10 keystrokes, plus the
name itself.

To reduce this to a more manageable number,
1-2-3 permits the use of keyboard macros. Macros
are like simple programs, written in 1-2-3’s
operating language. They are created by storing
the required keystrokes in a small portion of the
worksheet, naming the location, then assigning the
name to a specific key on the keyboard. From then
on, the keystrokes will be carried out
automatically by 1-2-3 whenever the assigned key
is pressed in conjunction with a special function
key, labelled ALT on the IBM PC and compatible
machines.

To automate the cell-naming process, we begin
by allocating a section of cells on the worksheet to
the macro. These cells must be chosen carefully for
two reasons. First, they must occupy a safe space
on the worksheet, an area in which data will never
be placed. Secondly, as mentioned earlier, 1-2-3
allocates space in memory only for cells that are
activated. A cell is activated whenever it is pointed
to by the cursor, so empty spaces between data
cells will be given a space in memory. Thus, if a
macro is placed far to the right of the rest of the

i eS |

worksheet, several Kbytes of usable memory may
be devoured by empty cells. For this reason, it is
often preferable to place macros at the left-hand
edge of the worksheet, in columns A, B, and C, for
example. Ifall of the formulae in the worksheet are
written to work from left to right, the macro
regions will remain untouched.
We will build our naming macro in column A. If

the number of keystrokes becomes too large to fit
neatly into a single cell, the macro can be
contained on subsequent rows in the same
column. Pointing the cursor at cell A1, we type the
keystrokes needed:

“IRNG

At this point, 1-2-3 waits to accept the chosen
name from the keyboard. A pause is inserted by
typing a question mark enclosed in brackets, (?).
1-2-3 will wait until the user presses Return to
proceed with the macro. The bracket format is
used consistently whenever an action is desired
that cannot be indicated by a specific key. Included
are cursor movements, which are shown by typing
a direction word in brackets. Carriage returns are
indicated by a tilde, . Thus the macro continues:

‘/R NC (?) (right) (right) (right) (right) ”

We have now entered all the keystrokes we need to
name a region. This is the body of our macro.

The next step is to name the region with the label

of a key, such as N, for nam e. Unfortunately,
we are faced with a vicious circle here. We must
type out all the keystrokes we have just entered in.
our range-naming macro because we haven't yet
named and stored our macro! We place the cursor
in cell Al and type:

‘/RNC \ N Return Return —

The character \ is used to indicate that the ALT
key must be pressed — so \ N, the name of our
macro, means ALT N to 1-2-3. Now that the region
has been named, pressing ALT and N together will
automatically activate the sequence of keystrokes
stored. From this point on, naming a region can be
accomplished by typing:

ALT—N NAME Return

— a large improvement on the original process.
This example, while useful, is a minimal sample

of the potential of keyboard macros. There is
essentially no limit to the number of keystrokes or
the number or type of operations that can be
automated with macros.

The principle of keyboard macros makes it
possible for the user to customise applications
software almost as one would write a BASIC or
PASCAL program. Although Lotus’s 1-2-3 program —
is expensive and is limited at present to business
systems, the concept of macros will almost
certainly filter down to software on home micros.

THE HOME COMPUTER ADVANCED COURSE 785

y : _ —

COURTESY OF LOTUS DEVELOPMENT CORP.

Lotus Command Cluster
Lotus has several levels of
menus, as shown here. These

commands are built in. Others

can be user-defined via

keyboard macros

We have already shown you how the basic
procedures of an adventure game are
defined using LOGO (see page 775). Here, we
discuss the procedures for moving between
rooms and dealing with ‘perils’, before
starting to build up the fantasy world of our
own game. :

Now that we have set up the basic structure of the
game, we must consider procedures for moving
between rooms. We will allow four directions of
movement — north, south, east and west.

TON
MOVE “N :EXIT.LIST

END .

TOS
MOVE “S :EXIT.LIST

END

TERE
MOVE “E :EXIT.LIST

END

TO W
MOVE “W :EXIT.LIST

END
A procedure called MOVE first checks that you can
move in that direction, and then leaves the actual
movement to another procedure — MOVE1.

TO MOVE :DIR :LIST
IF EMPTY? :LIST THEN PRINT [YOU CAN’T GO
THAT WAY] STOP
MAKE “EXIT FIRST :LIST

IF :DIR = FIRST :EXIT THEN MOVE1 LAST :EXIT
STOP |
MOVE :DIR BUTFIRST :LIST

END

TO MOVE? :NO
MAKE :ROOM.NAME HERE. DETAILS
MAKE “HERE :NO
ASSIGN. VARIABLES

LOOK

786 THE HOME COMPUTER ADVANCED COURSE

MOVE1 takes a room number as input. First, it
reassembles a list from its various components and
reassigns it to the room name (there may have
been changes while the adventurer was in the
room). Then it alters HERE to the new room
number and reassigns the various lists. This is the
procedure it uses:

TO HERE.DETAILS |
OUTPUT (LIST :DESCRIPTION :CONTENTS
:EXIT.LIST)

END |

This uses the primitive LIST, which makes a list of
its inputs. The difference between LIST and
SENTENCE is best explained by an example:

LIST [A] [B] [C] outputs [[A] [B] [C]]
SENTENCE [A][B][C] outputs [A B C]

Since we wish to keep the individual components
as sublists, we need to use LIST here rather than
SENTENCE.

PERILS OF THE GAME
Generally, within an adventure game there are
certain ‘perils’ to be avoided, such as poisonous
snakes or quicksand. When the player encounters
a peril we need to trigger off a certain sequence of
actions, and prevent any movement out of the
room until the peril has been overcome. The way
we have done this is to add another list to our room
list, which contains the names of any special peril
procedures to be run on entering that room. So, we
might define ROOM.2 as [[[YOU ARE IN A DARK DAMP
CAVE][THERE IS A LIGHT IN FRONT OF YOU]] [BOX]
[[N 5][E 6]][SNAKE]] where SNAKE is a ‘peril’. As a
consequence of adding this to our list, we must
modify the LOOK procedure given in the previous
instalment:

as d;

hs

by)

TO LOOK
~ PRINTL :DESCRIPTION -

PRINT °

PRINT [YOU CAN SEE:] —
IF EMPTY? :CONTENTS THEN PRINT NOTHING
SPECIAL] ELSE:PRINT :CONTENTS
PRINT * |

PRINT [YOU CAN GO:] PRINT. EXITS. -EXIT. LIST
PRINT °

IF PERIL? THEN RUN :PERILS

~ END

RUN is a very powerful Loco primitive. It takes a
list as input and runs the procedures in that list.
Here, [SNAKE] might be assigned to PERILS, so RUN
PERILS would run SNAKE.

TO PERIL?
IF EMPTY? :PERILS THEN OUTPUT “FALSE
OUTPUT “TRUE

END

A number of other procedures now need to be
modified to take account of these perils:

TO ASSIGN.VARIABLES
MAKE “ROOM.NAME WORD “ROOM. :HERE
MAKE “ROGM THING :ROOM.NAME 7
MAKE “DESCRIPTION DESCRIPTION :ROOM
MAKE “CONTENTS CONTENTS :ROOM
MAKE “EXI¥-LIST EXIT.LIST :ROOM
MAKE “PERILS PERILS ; “ROOM

END

0 PERILS - ‘ROOM
OUTPUT ITEM 4 :ROOM

END

TOHERE.DETAILS |
OUTPUT (LIST DESCRIPTION :CONTENTS
‘EXIT.LIST :PERILS)

END

TO MOVE :DIR :LIST
IF PERIL? THEN PRINT [YOU CAN'T GO THAT
WAY] STOP
IF EMPTY? :LIST THEN PRINT [YOU CAN’T GO
THAT WAY] STOP 3

~ MAKE “EXIT FIRST :LIST
IF :DIR = FIRST :EXIT THEN MOVE1 LAST :EXIT
STOP
‘MOVE :DIR BUTFIRST : LIST

END checks if they are valid and then executes them.

MOVE now prevents any movement until PERILS is
set to []. By setting up perils in this way we can use
the same peril in a number of rooms, and move it
from room to room by simply altering the room —
descriptions.

_ We can now use the procedures that we e have
developed here to build up a complete adventure
game called The Shrine of Zoltoth. In this game,
the adventurer is in search of the sceptre of
Gilgesh, which has been stolen by the high priests
of Zoltoth and taken to their temple underground.
The adventurer begins the game standing at the
entrance to the underground cave leading to the
shrine of Zoltoth. When designing your own
game, you could begin by writing out a scenario
for a successful journey through the game, and
structuring the game around that. We do not give
the scenario for our game here, so that you can still
attempt to play it if you choose.

The next stage is to plan out the game in terms
of ‘rooms’ — that is, locations within the game,
their contents and positions relative to one
another. This drawing of the fantasy world is then ©

_ used to define the locations in the program, giving
the exits allowed from each location. Adventurers
will, in turn, have to build up-a map as they go
along.
We now need to decide on the vocabulary tobe

used by the game — what words from the
adventurer will the program be able to
understand? We will allow:

1. Seven single word commands: START, LOOK, N,
S, E, W, and INVENTORY (these were all described 1 in
the last instalment).
2. Double word commands consist of a verb
followed by a noun.
The verbs are: GET, DROP, EXAMINE, KILL, RUB and
OPEN.
The nouns are: SWORD, CHEST, SCEPTRE, RING and
SNAKE. |

All of the commands are typed directly to Loco. If.
they are recognised, they will be obeyed, but if they
are not ee acne then the user will get a Loco
error message. .

However, it would be better to give error
messages such as “I don’t know that word”, rather
than the standard Loco error messages. To do this,
we need an outer loop that picks up the inputs,

THE HOME COMPUTER ADVANCED COURSE 787

i rae
oy LN

7 ? : Wz

Here is one way of doing this for the vocgbalany
defined so far:

TO START |
MAKE “HERE 1
MAKE “INVENTORY {]
SET.ROOMS
ASSIGN. VARIABLES
LOOK

GAME
END

TO GAME
~PRINT1 “COMMAND:
MAKE “INPUT REQUEST
IF VALID? :INPUT RUN :INPUT ELSE PRINT ll
DON’T UNDERSTAND] ae
GAME

END

TO VALID? :COM :
F ((COUNT :COM) =
te
IF ((COUNT :COM) =
‘COM
OUTPUT “FALSE

END

TO VAL1? :COM
IF MEMBER? FIRST :COM [INV W E S N LOOK
START] OUTPUT “TRUE
OUTPUT “FALSE

END

TO VAL2? :COM
IF ALLOF VALV? FIRST :COM VALN? LAST COM
OUTPUT “TRUE
OUTPUT “FALSE

END

TO VALN? :NOUN
IF MEMBER? :NOUN [SWORD CHEST SCEPTRE
RING SNAKE] OUTPUT “TRUE
OUTPUT “FALSE

END

TO VALV? :VERB
IF MEMBER? :VERB [GET DROP EXAMINE KILL
RUB OPEN] OUTPUT “TRUE
OUTPUT “FALSE

END

1) THEN OUTPUT VAL1?

2) THEN OUTPUT VAL2?

THE PROGRAM
You must first enter all the procedures given in the
last instalment (see page 775). To begin the game,
or to restart it at any time, type START.

TO START
MAKE “HERE 1
MAKE “INVENTORY []
SET. ROOMS
ASSIGN. VARIABLES
LOOK

END

SET.ROOMS sets up the rooms according to the
map.

TO SET. ROOMS

188 THE HOME COMPUTER ADVANCED COURSE

MAKE “ROOMA [[[YOU ARE STANDING AT THE
ENTRANCE] [TOACAVE}] (J ([E2]] 0]
MAKE “ROOM.2 [[[YOU ARE IN A DARK, DAMP

CAVE]] [] ([S 3] [E 4] [W 1] U]]
MAKE “ROOM.3 [[[YOU ARE IN A DARK, DAMP

CAVE]] [] ([N 2] [E 9]] [1] :
MAKE “ROOM.4 [[[YOU ARE IN A GREAT
UNDERGROUND CHAMBER]] [] [[N 6] [S 5] [W
2]] [SNAKE.ATTACKS]]
MAKE “ROOM.5 [[[YOU ARE INA DARK, DAMP

CAVE]] [SWORD] [[N 4] [W 3] []]
MAKE “ROOM. 6 [[[YOU ARE IN A SACRED
SHRINE ROOM] [IN AN ALCOVE IN THE NORTH -
WALL] [IS AN ALTAR]] (J [[N 7] [S 4] [E 8}]
-[GATE]]
MAKE “ROOM.7 [[[YOU ARE STANDING BY]
[THE ALTAR OF ZOLTOTH THE GILDED] [ABOVE
THE ALTAR IS WRITTEN:] [“LET NO BASE
METAL APPROACH”}] [RING] [[S 6]] []]
MAKE “ROOM.8 [[[YOU ARE IN A DARK, DAMP
CAVE]] [] [[S 10] [E 9] [W 6]] [SNAKE.ATTACKS]]
MAKE “ROOM.9 [[[YOU ARE IN A DARK, DAMP
CAVE]] [CHEST] [[S 11] [W 8]] []]
MAKE “ROOM.10 [[[YOU ARE IN A DARK, DAMP.

CAVE}) [] [[N 8] [E 11]] (11
MAKE “ROOMA11 [[[YOU ARE IN THE VESTRY
OF] [THE PRIEST OF ZOLTOTH THE GILDED]]
[SCEPTRE] [[N 9] [W 10]] ul

END

&

OVER SIXTEEN

The Commodore 16 is the cheaper of the
two ‘new generation’ home and small
business computers introduced by the
company in 1984. The other is the Plus/4,
which comes with a larger memory and
rudimentary integrated software in ROM
(see page 709).

Possibly intended to aapenede the Vic-20, walls its
minuscule 3,583-byte memory, the 16 shares with

the Plus/4 a very powerful Basic, which
supplements the BAsic disk-handling commands
of machines like the CBM 8296 with a batch of |
toolkit, graphics and simple sound commands,
while making a token gesture towards structured
programming with DO ... WHILE and LOOP ...
UNTIL. . . EXIT constructs.

Unlike the Plus/4, which has a keyboard and
case that are radically different from anything seen
previously from Commodore, the 16 is supplied in
a similar casing to the earlier Vic and 64 models,
although the colour scheme is different —
charcoal, with light-grey keys — and the key layout
has been changed. The keys are large and well
placed and have a firm professional feel to them,
like those of the 16’s predecessors. An interesting
innovation is the provision of a HELP Key (actually
function key F8), which aids the user after a
program has stopped with a syntax error report by
displaying the line containing the error and
flashing the part that is incorrect. In multiple-
statement lines, the characters flash from the error —
to the end of the line — it would be more helpful if
the flashing were restricted to the actual error (e.g.
PRONT for PRINT).

POINTS AGAINST
The most controversial aspect of both the 16 and
Plus/4 is the fact that for the first time
Commodore has produced hardware that is not
‘upward compatible’ with what has gone before —
no Vic or Commodore 64 software will run on
either new machine. The joystick and cassette
sockets are also different, with the former
departing from the nine-pin D-connector type
that is generally regarded as a standard fitting.
Disk interface and monitor sockets, however, are
identical to those found on the 64.

The most serious change for the worse, as far as
the games programmer is concerned, is that there
is no provision for sprites. Though the Vic-20 had
none, their use in the Commodore 64 (and
competitive machines) has so accustomed users to
sprites for the simple manipulation of graphics
shapes that this seems a strange omission.

On power-up, the screen shows the familiar
Commodore display, with the difference that the
BASIC indicated is version 3.5, and there are 12,277
bytes of memory available. Basic 3.5 is actually
the fifth version to be written for Commodore

machines. The original version, 1.0, contained no
disk-handling commands, and these were very
cumbersome in version 2, which was for some

~ reason the dialect incorporated in the Vic-20 and
Commodore 64. By March 1980, version 2 had
been superseded by version 4, which is a very
efficient BASIC written for the 80-column Pets, the
8032, 8096, and now the 8296.

Version 3.5 is almost identical to BASIC 4, witha
number of extra commands. In all, the new
version has over 50 more commands and
functions than were offered by the Vic, including
toolkit commands used in writing and debugging
programs, structured programming features,
graphics and sound commands.

The direct command MONITOR invokes
Tedmon, the resident monitor (which can also be
accessed by SYS 4 as on the Pet series). This uses
single-letter mnemonic commands: for example C,
which will compare two sections of memory and
report the differences; and S, which will save to
tape or disk.

The ‘kernal’ routines are mainly unchanged.
These are routines called from machine code that
govern the handling of the input and output
routines. However, the 64’s IOINIT function to
initialise input/output devices (and especially
program cota has been added at ek

CHRIS STEVENS

Commodore 16
Intended to réplace the Vic-20 in
the Commodore line-up, the
new machine has 16K of ©
memory and an improved
BASIC. The Commodore 16 is
software-and plug-compatible
with the Plus 4, but not with the
older Commodore machines,
the Vic-20 and Commodore 64

THE HOME COMPUTER ADVANCED COURSE 789

HARDWARE/COMMODORE [6

GRAPHICS
The bit mapped high resolution screen is 320 by
160 pixels in size, and the multi-colour screen
gives a resolution of 160 by 160. The GRAPHIC
mode command is obviously easier to invoke than
the 64’s POKEs and PEEKs, as is the split screen,
although with this text is limited to the bottom five
lines. However, text may be placed anywhere on a
graphics screen by using the CHAR statement, so

CHAR 1,0,0, “THIS IS THE TOP LINE”

will print along the top of the screen, 1 being the
colour selected, and the two zeros referring to
column and row positions. The string can be
printed in inverse video if it is flagged with a *,1’;
this is turned off with ‘,0’. Any syntax error in any
of the graphics modes will return the user to
GRAPHIC 0, the ‘pure text’ screen. _

The DRAW. command is something of a
compromise between the fairly limited straight
lines available on the Amstrad and the Loco-like
MSX DRAW. For example, a square can be drawn
with:

DRAW:10,10 TO 10,60 TO 60,60 TO 60,10 TO 10,10

In this case the first parameter is not defined, so the
colour of the square will be the last colour set. This
colour can be changed by inserting the relevant
value. There is also a BOX command, which is used
specifically to draw rectangles by specifying the
positions of the four corners, with a ‘fill’ parameter
to paint the box with colour.

The CIRCLE command will draw ellipses,
octagons and even diamonds and triangles as well
as ‘proper’ circles, depending on the parameters
specific’: The non-circular shapes are chosen by
specifying 120° angles between segments for a
triangle, 90° for a diamond, and 45° for an
octagon. The default setting is 2°. PAINT will fill the
shape so created, either with the same colour as the
shape outlined or with a definable foreground
colour, and shapes can be SAVEd or recalled to or
from disk by use of the SSHAPE and GSHAPE
commands.

Colours are specified from Basic by allocating
one of 16 values to background, foreground,
multicolour 1, multicolour 2, or border, with an
optional luminance parameter of 0 to 7. The
default luminance is 7, the brightest. In all drawing
commands, the colour parameter has to be chosen
from one of the five areas already defined.

SOUND ,
After the sophistication of the sound commands
possible with the 64’s SID (Sound Interface
Device) chip, the Commodore 16’s two-channel
sound is something of a disappointment,
especially since the current generation of
competitive machines utilising the General
Instruments’s sound chip — Amstrad, MSX,
Einstein — offers three channels plus noise. |

However, the SOUND command doesn’t require
figures to be POKEd into locations 54272 to 54296,
as with the 64. If you know the frequency of a note,

790 THE HOME COMPUTER ADVANCED COURSE

you can look it up in a table in the manual and use
the supplied figure to define the note to be played.
For example:

SOUND 1,770,60

will sound note A (at a frequency of 440 Hz) for
60 sixtieths of a second, (i.e., one second) on
channel 1.

_ The lowest sound that can be played is A two
octaves below middle C (110 Hz), and the highest
is G two octaves above middle C (1,575 Hz),
giving a total musical span of four octaves. ‘Two
music channels are available (1 and 2), or one
music channel (1 or 2) and one white noise

channel (3). Both channels are combined, since
the audio out signal is in mono, and there i is no way
of separating the two.

The Commodore 16 is an attractive machine,
with a very advanced Basic and good graphics
commands, but its sound facilities are fairly
primitive, even in comparison with the Vic-20,
although they are easier to execute on the new
machine.

Very little software is available for it at launch-
time, which could hold back its success in the
marketplace until the situation is rectified. Buyers
upgrading from the older machine may also be put
off to find that it won’t RUN their old programs.

THE HOME COMPUTER ADVANCED COURSE 791

Formation Display
_ The screen formatting routine

used by Haunted Forest and
Digitaya allows any screen
output to be formatted so that
word breaks do not occur. By
using variables OWS and NWS
‘the routine ‘looks’ one word
ahead of the word about to be
printed. If the next word were to

exceed the designated line
length, the semi-colon
supressing a carriage return is
ommited, causing a new line to
be started

792 THE HOME COMPUTER ADVANCED COURSE

STORY LINE

The adventure games that we are designing
in this programming project are text-based
— when the player enters a new location, the
description and the possible exits must be
printed to the screen. Here, we develop a
utility that will allow us to format output to
the screen.

As Digitaya and Haunted Forest are both text-
based adventures, they use words to describe
locations and events. Passing this information to
the screen using PRINT statements can be
inelegant. For example, a PRINT statement that
exceeds the length of one screen line will carry
onto the next line, often splitting in two words that
fall across the end of the screen line. A laborious
way to get around this problem would be to
consider each PRINT statement in the program
individually and ‘manually’ format the output so
that words on the ends of lines were not split. If
there were just a few occasions on which this had to
be done then it would not be too much of a chore,
but in an adventure game program this would have
to be done a lot. The alternative is to design a
routine that formats output for us. To use such a
routine we should be able to pass the sentence we
want to format to the routine via a string variable,
and the routine should take care of the formatting
and output. |

Digitaya and Haunted Forest both use a special
routine to format their output, so before we
continue to describe the game programming itself,
let’s look at how this routine works. Here is the
listing from the Haunted Forest game.

5500 REM *x**x FORMAT OUTPUT S/R **xx
551@ LC=a@: REM CHAR/LINE COUNTER
5520 oc=1: REM OLD COUNT INITIAL VALUE
5530 OWSs="": REM OLD WORD INITIAL VALUE
554@ LL=4@: REM LINE LENGTH
5550 SNS=SNS+" DUMMY "
5560 PRINT
5570 FOR C=1 TO LENCSN®)>
558@ LC=LC+1 |
5599 IF MID$(SN$,C,1)=" " THEN GOSUBS800
5600 NEXT C
5695 PRINT
5610 RETURN
5620 :
5800 REM ** END OF LINE CHECK S/R **
5810 NW$=MIDS<(SN*S,OC ,C-OC+1)>2REM NEW WORD
5820 IF LC<LL THENPRINTOWS: :GOTO5840
583@ PRINTOWS: LC=LEN(NWS)
5840 OC=C+1: OWS=NWS
5850 RETURN

The routine first of all searches through the
sentence, passed to it by the variable SNS, for a
space character. Whenever a space is found, the
subroutine at line 6020 is called. This subroutine
carries out several important tasks. Using OC to
indicate the beginning of a word (initially, OC is set
to 1), and C to keep track of the current character
under examination, the word encountered before
the space can be isolated using MIDS and stored in
NWS (for ‘New Word’). Before the contents of
NWS are output to the screen, they will be
transferred to OWS. |
A line counter, LC, is used to count how many

characters have been used so far on any given line,
and this is checked at line 6040 to ensure that it is
less than the permitted line length, LL. If this is the
case, then OWS is PRINTed, followed by a semi-
colon to ensure that any output that follows will
continue on the same line. If LC does exceed LL
then, again, OWS is PRINTed, but this time omitting
the semi-colon (and thus, any output that follows

LIZ DIXON

will start on a new line). In addition, the line
counter, LC, is reset to the length of the new word.
Now let’s see how this subroutine works in

practice. The routine scans through the sentence
to be formatted, searching for a space. When a
space is found, the characters between it and the
last space found are designated as forming a new
word. The routine is, effectively, looking ahead
one word from that which is being PRINTed. The
routine checks if the maximum wordlength has
been exceeded when the new word is added to the
screen line. If so, the routine causes a new line to be
started. Thus, word splits over the end of the lines
are avoided. The addition of “ DUMMY ” to the end
of the sentence is important, as this provides a last
word to be stored in NWS. The spaces around
“ DUMMY ’ are significant: the former marking it
as a separate word and the latter providing a final
space to be detected by the routine.

Let’s take as our example, the sentence ‘Mary -
had a little lamb its fleece was white as snow.’ The
screen width we will use is 40 characters wide. If
the sentence were unformatted, the word ‘white’
would be split in two, with the letters ‘ite’ starting a
new line. The formatting routine, however, takes
the sentence two words at a time. If we consider
the two words preceeding ‘white’, then ‘fleece’
would be stored in OWS and ‘was’ in NWS. Having
checked that the counter, LC, does not exceed 40,
OWS is PRINTed, followed by a semi-colon; ‘was’ is
then transferred from NWS to OWS and the routine
continues to scan the sentence, and finds the word
‘white’. At this stage, the counter LC exceeds 40,
indicating that ‘white’, falls over a line break. In this
situation, OWS (now containing the word ‘was’) is
still PRINTed but without a semi-colon. In addition,
the counter LC is reset to the number of characters.
in this word. The word ‘white’ is transferred to
OWS, for subsequent PRINTing on a new line.

TESTING THE ROUTINE
In order to test the routine, we will use it
format and: display the initial description of the
story. We can assemble a sentence of up to 248
characters, using the variable SNS, and call the
formatting subroutine. Type in the following lines:

108969 REM **xx*x STORY SO FAR S/R *k%*

1919 SN¢="WELCOME TO THE HAUNTED FOREST"

1020 GOSUBSS500:REM FORMAT

1038 PRINT

1940 SN¢="AS YOU AWAKE FROM A DEEP SLEEP, THE "

1958 SN#=SNS$+"FOREST FLOOR FEELS SOFT AND DRY. "

196@ SN¢="YOU DO NOT KNOW HOW YOU CAME TO BE HERE "

10878 SNS=SN#+"BUT KNOW THAT YOU MUST FIND THE "

1988 SN*=SN$+"VILLAGE ON THE EDGE OF THE WOOD TO "

1098 SN*#=SN%$+"REACH SAFETY."

1196 GOSUBS590:REM FORMAT

111@ PRINT

112@ SN$="YOU LOOK AROUND, TRYING TO GET YOUR BEAR

INGS.”

113@ GOSUBS50@:REM FORMAT

114@ PRINT:PRINT"PRESS ANY KEY TO START"

1150 GET AS: IF AS="" THEN 1150

116@ PRINTCHR#$(147>:2REM CLEAR SCREEN

1178 RETURN

We then need to call the ‘Story So Far’ subroutine
using these lines:

205 GOSUB 1000: REM STORY SO FAR
990 END

THE HOME COMPUTER ADVANCED COURSE 793

‘Signature Tone
Handwritten messages

or signatures can be
reproduced on a remote
pad connected by telephone
to this facsimile transmission
pad. The transmission itself is
scrambled and silent, so should
be doubly safe from interception
or eavesdropping

IDENTIFICATION
This is a method whereby the computer
determines the identity of a user. [dentification is
necessary in multi-user and network systems, as
well as micros, to prevent unauthorised users
gaining access to confidential files and documents.
The process generally consists of a password or
coded value being entered to enable the user to
‘log on’ to the computer. This is then followed by a
personal password, which allows users access to
their own personal files.

However, because this system has proved to be
vulnerable to ‘hacking’ — unauthorised entry —
both users and manufacturers have been searching
for a more foolproof method of identification.
One such method, being developed by Dr Kuno
Zimmerman of the University of Missouri-
Columbia in the US, requires the user to inscribe a
signature on an electronic pad. Significant points
of the signature will then be compared with the
version stored in the computer’s memory. As each
signature is unique, this will make it much more
difficult for other Peane to gain access to the user’s
files.

IEEE
The Institute of Electrical and ‘Blectronic
Engineers was founded in 1963 in the United
States, as a result of the merger of the Institute of
Radio Engineers and the American Institute of
Electrical Engineers. It now has over 200,000
members throughout the world.
Home computer users may be familiar with the

IEEE 488 parallel communications bus, to which
the Institute has given its name. The IEEE
(usually referred to as ‘I triple E’) bus standard
demands that there should be a line for each bit ina
byte, enough lines to accommodate the maximum
address, and control lines set aside for input and
output. The IEEE standard also consists of a

794 THE HOME COMPUTER ADVANCED COURSE

handshake protocol, which enables data to be
checked for accuracy as it crosses the bus. The
IEEE bus can be used, therefore, to transmit data
between different types of computer.

IF-THEN-ELSE
This conditional statement is to be found in the
BASIC. dialects on most popular home micros,
although the ELSE part of the statement is only
implemented on some of the more advanced
home machines. When the _ IF-THEN-ELSE
statement is fully implemented on a micro it
provides the computer with a choice of actions,
dependent on whether the IF condition is either

~ true or false. When the IF condition is true THEN the

following action will be executed. Conversely,
_ when the IF statement is false, the action following
the THEN statement will not be executed.

The full statement allows a program to be truly
structured, as the ELSE command can be used to
call another subroutine, which will check for other
conditions. Unfortunately, many popular micros
have only the IF-THEN part of the statement. This
means that when the IF condition fails the rest of
the line is not implemented and control is
transferred to the following line. While this is not
disastrous, as further conditions can be checked on
following lines, this system is harder to debug and

not as failsafe as having checking procedures in
separate routines.

IMPACT PRINTERS
An impact printer prints alphanumericor graphics
characters onto paper by means of mechanical
impact. There are two main types of impact

printer. In the first, an engraved piece of type is
forced against an inked ribbon, thus forming an
impression on the paper. An example of this type
is the daisy wheel printer.

The second type of impact printer consists of a
number of pins in a matrix. The pins are forced out
in various combinations, determined by electrical
signals. The pins press against the inked medium,
creating the character on the paper. An example
of this type is the dot matrix printer. Although
typewriters are, in the strict sense of the term,
impact printers, they are generally not included as
such. This is because impact printers are
considered to be devices that are not exclusively
controlled from a keyboard.

IMPULSE NOISE
Noise is considered a problem in computing as it
can interfere with electronic signals and, therefore,
corrupt the data being transmitted. Impulse noise
occurs in irregular bursts, and, due to its large
amplitude (volume), can badly disrupt the
efficient operation of analogue devices. This is
because the impulse noise will be picked up by the
analogue device and then transmitted as data —
thus generating a burst error (an error found in a
single piece of data). Impulse noise is difficult to
deal with due to the irregular nature of its arrival
and the variations in the size of each pulse.

1
i

t

4
(

~ BREAK EVEN POINT

program. First, we will complete the module
of routines to handle breakpoints, which we
started coding in the last instalment (see
page 777). Then we look at the procedures
necessary to handle each of the commands.

We have yet to define two subroutines for the
Breakpoint module — one to remove inserted
breakpoints and the other to restore the original
op-code where we have placed a temporary SWI-
opcode. The first routine we need to consider is
called § Uninsert-Breakpoint (from the
Breakpoint-Table).
Up to 16 breakpoints have been allowed for in

the Breakpoint-Table (BPTAB). ‘Io remove one we
must be supplied with its number as an offset (in
the range 0 to 15) into this table. The table entry is
removed by shifting all subsequent entries in the
table back one place (two bytes) and
decrementing the Number-Of-Breakpoints.

UNINSERT-BREAKPOINT
Data:

Number-Of-Breakpoints is an eight-bit value
Breakpoint-Number is an eight-bit counter
Breakpoint-Table is a table of 16-bit addresses
Entry-to-be-Removed is an eight-bit offset (with a
value in the range 1 to 16)

Process: Uninsert-Breakpoint
Decrement Number-Of-Breakpoints
lf Entry-to-be-Removed <= Number-Of-
Breakpoints (one before last) THEN

For Breakpoint-Number = Entry-to-be-
Removed to Number-Of-Breakpoints (one
before last)
Move Breakpoint-Table(Breakpoint-Number +
1) to Breakpoint-Table(Breakpoint-Number)
Move Removed-Values(Breakpoint- Number + 1)

to Removed- Values (Breakpoint-Number)
EndFor

Endit
End of Process
The parameter Entry-to-be-Removed can be
passed in B. The counter Breakpoint-Number can
then also be placed in B, and will get automatically
set to its correct initial value. After comparing it
with Number-Of-Breakpoints, it must be
decremented to form the offset into the eight-bit
Removed-Values table and _ then shifted
(multiplied by two) to form an offset into the
16-bit Breakpoint-Table. We can keep the eight-
bit offset in B and the 16-bit offset in A. The
addresses of the entries in the two tables can be in X
and Y, so we can use auto-increment to step

through the table. The 16-bit entry can be shifted
through U, but the eight-bit entry will have to use A
again.

The last process used in this module physically
removes a breakpoint by replacing the SWI-
opcode with the original op-code from the table of
Removed- Values.

UNSET-BREAKPOINT
Data

Breakpoint-Number is the eight-bit offset
into Breakpoint-Table

Process:
Get value in Removed-Values(Breakpoint-
Number)
Store it in address in Breakpoint- Table
(Breakpoint-Number)

We will assume that the parameter Breakpoint-
Number is passed in B in the usual form as a
number in the range from one to 16, which must be
converted to function as an offset into the tables.
We are now at the stage where we can start

constructing a module to execute the eight single-
letter commands that operate the system (see page
758). A number of these commands can be
directly executed by the routines that we have
already written. However, for the sake of
completeness and a proper modular structure we
shall incorporate calls to them from this module.

The command B, to insert a breakpoint, is
covered completely by the routine Insert-
Breakpoint (BP01). In this module, therefore, we
simply need:

CMDB BRA BPO1

Command U, to Un-insert a breakpoint, is almost
covered by the routine that we have just written
(BP04). However, we must first get the address of
the breakpoint to be removed and search the
Breakpoint-Table to find that address. If it is not
there, then we ignore the command; if it is there,
then we can pass the offset to the subroutine at
BPQ2.

COMMAND U
Data:

Prompt is to be displayed
Breakpoint-Address is the input
Breakpoint-Table |
Breakpoint-Number

Process: |
Display prompt
Get Breakpoint-Address
Set Breakpoint-Number to 16
While Breakpoint-Table (Breakpoint-Number)
<> Breakpoint-Address

THE HOME COMPUTER ADVANCED COURSE

Data:

and Breakpoint-Number > 0
Decrement Breakpoint-Number

If found then
Uninsert-Breakpoint

: Breakpoint-Address can be kept in Y, leaving X
available to use as a pointer into the table.

| Breakpoint-Number can be kept in B.
Command D, to display the breakpoints, is

covered by the routine labelled DISPBP (Display-
Breakpoints). This is simply accessed by a
subroutine branch: 7

CMDD BRA DISPBP

Command S, to start running the program, is
rather more complicated, since this is where
breakpoints have to be inserted. The op-code for
the SWI instruction must be inserted at each
address in Breakpoint-Table, and the op-code that
is already there is put into Removed-Values.
When this has been done, control must be
transferred to the start address of the program. We
must also note that the next breakpoint is number
1. The full process for the start of program is:

COMMAND $S

Number-O0f-Breakpoints is an eight-bit value
Breakpoint-Table
Removed-Values
Breakpoint-Number is an eight-bit counter
Next-Breakpoint is an eight-bit value
SWI-Opcode is an eight-bit value
Start-Address is a 16-bit starting address for the
program that we are debugging

Process: |
Set Breakpoint-Number to Number-Of-
Breakpoints |
While Breakpoint-Number > 0

Set-Up-Breakpoint (Breakpoint-Number)
Decrement Breakpoint-Number

Endwhile
Set Next-Breakpoint to 1
Jump to Start-Address

For this, we use the routine Set-Up-Breakpoint —
this is already coded — which requires the
Breakpoint-Number (minus one, so that it can be
used as an offset into the tables) in A. For
convenience, we will decrement A before the call to
Set-Up-Breakpoint. The full coded routine is
given here. |

The way that this routine ends needs a little

796 THE HOME COMPUTER ADVANCED COURSE

explanation. When the program to be tested is
running we do not need extra items on the stack, so
-we must make sure that the stack is empty when
control is transferred to the program. We can clear
any superfluous items off the stack in the main
module, but if this routine is called by means of a
BSR (to maintain consistency with other
commands) the return address will have been
placed on the stack. If we leave it there, then, in a
long session (where the program may be restarted
a number of times) the stack will keep growing.
The solution we have used removes the address
from the stack at the same time as control is
transferred back to the program. It does this by
replacing the return address on the stack by the
start address. The RTS then pulls the return
address, which is now the start address, off the
stack, thus transferring vontrol while resetting the
stack. |

The final command we will look at in this
- instalment is command M, to inspect and change
memory locations. The idea here is to get an input
address and to display the contents of that address
on the screen. The user can then enter a new two-
digit hex number to be placed in that location, or
simply a Return. In either case, we move on to the
next consecutive memory location. The user can
stop the process by entering a dot. The routine
GETHX2 was coded with this in mind, allowing the
entry of two hex digits or a dot or a Return.

COMMAND M
Data:

Current-Location is the 16-bit address of the

location being inspected
Current-Value is found in Current-Location. This

is eight-bit
New-Value for the Current-Location. This is also
eight-bit

Process:
Get Current-Location

Repeat
Display Current-Value
Get New-Value
If New-Value is not a dot then

If New-Value is not Return then

Store New-Value in Current-Location
Endif

Increment Current-Location
Display Current-Location

Endif
Until Current-Location is a dot

For this command routine, Current-Location is
stored in X, and the B register is used for both
Current-Value and New-Value. A is used as a flag
to indicate which of the three possibilities (hex
number, dot or Return) was entered.

We have now to design and code three
remaining commands — G, R and Q. However,
these involve the use of an interrupt mechanism,
which we have yet to look at. This, and the
designing of the main module for the deb gging
program, are the subject of the next instalment.

Uninsert Routine
BP04 PSHS A,B,X,Y,U

DEC NUMBP,PCR

|FO2 _ CMPB NUMBP,PCR
BGT ENDFO2
DECB .
TFR B.A
LSLA
LDX BPTAB,PCR

LEAX A,X

LDY REMTAB,PCR

LEAY BY

FOROO LDU 2,X

STU X++

LDA 1y

SIA Yt+

INCB

CMPB
BLT FOROO

ENDFO2 PULS

NUMBP,PCR

A,B,X,Y,U,PC

Save used registers

Decrement Number-Of-
Breakpoints

lf Entry-to-be-Removed <
Number-Of-Breakpoints

Convert B to use as offset

Copy Binto A

Convert A to use as offset

Base address of Breakpoint-
Table

Breakpoint-Table (Breakpoint-
Number)

Base address of Removed-
Values

Removed-Values (Breakpoint-
Number)

Get Breakpoint-Table entry to be
moved

Move it back one place

Get Removed-Values entry to be
moved

Move it back one place

Last one?

Next one

Restore and Return

Unset-Breakpoint Routine
BP05 PSHS

: DECB
A,B,X

LDX REMTAB,PCR

LDA B,X
LSLB

LDX BPTAB,PCR

SiA.Sstéi@®*~AX|
PULS AB XPC

| Command U
PROMPT FCB >
CMDU PSHS = AB,XY

LDA PROMPT,PCR
BSR OUTCH
BSR GETADD
TFR DY
LDB MAXBP,PCR

LDX -BPTAB,PCR
TFR B.A
LSLA

LEAX A,X

TSTB
WHILO2 BLE

CMPY _
ENDW02

Convert to offset into Removed-

Values

Base address of Removed-

Values

Get value to be moved

Convert to offset into

Breakpoint-Table

Base address of Breakpoint-
Table

Store at address in table

Restore and Return

Save used registers

Display prompt

Get Address

Put Breakpoint-Address in Y

Maximum number of
Breakpoints (16)

Base Address of Breakpoint-
Table —

Ais offset to the end of
Breakpoint-Table

X now points past the end of the
table

Set flags on contents of B

While B=>0

(Remember X is decremented

first)

BEQ

DECB

BRA

ENDWO02 TSTB

IFO3 BLE

~ BSR

ENDFO3 PULS

Command S$
START RMB

CMDS LDA

WHILO3 TSTA

BLE
DECA
BSR
BRA

ENDW03 LDA
STA
SID
RTS

Command M
PROMPT FCB
SPACE FCB
CMDM PSHS

LDA
BSR
BSR
TFR

REPTO1 LDB
BSR
LDA
BSR
BSR

FO3 TSTA
BLT
BGT
STB

ENDF03 LEAX
TFR
BSR
BRA

UNTLO1 PULS

ENDW02

WHILO2

ENDF
BP04
A,B,X,Y

2
NUMBP,PCR

ENDW03

BP02
WHILO3
rl
NEXTBP,PCR
1,8

2
32
A,B,X
PROMPT,PCR
OUTCH
GETADD
D,X
X
PUTHEX
SPACE,PCR
OUTCH
GETVAL

UNTLO1
ENDF03
X

1,X
X,D
DSPADD
REPT
A,B,X,PC

and Breakpoint-Address is not
found in table

Decrement Breakpoint-Number

Found if B>0

If found then

Uninsert-Breakpoint

Start-Address

Set Breakpoint-Number to
Number-Of-Breakpoints

Test the value of Breakpoint-
Number

While Breakpoint-Number>0
Decrement Breakpoint-Number

Set-Up-Breakpoint

Next Breakpoint

Set Next-Breakpoint to 1

ASCII code for Space

Save used registers

Display Prompt

Get Current-Location

Move it to X

Get Current-Value

Display Current-Value

Display a Space

Get New-Value

lf New-Value is not a dot

If itis not a Return

Store New-Value in Current-

Location

Increment Current-Location

Display Current-Location

THE HOME COMPUTER ADVANCED COURSE 797

IAN McKINNELL

a eee ee ee

SUM OF
THE PARTS
In this series of Workshop we have
developed a buffered electronic system that
can be used with the BBC Micro and the
Commodore 64 to monitor and control
external devices. In future instalments we
shall build a small robot. Now we review
the ground we have covered so far.

The BBC and Commodore 64 micros have a
similar input/output arrangement that allows
communication with the outside world through a
user port, consisting essentially of eight data pins
and an earth connection. These eight data pins
map directly into a particular location in memory,
called the data register, each pin corresponding to
a bit in the register. A second location, the data
direction register (DDR), controls the direction of
data flow from or to each pin. If any pin is set to
output (DDR bit=1) then a voltage of +5v is
‘induced at the pin whenever the corresponding bit
is set high (to one). If the data bit is set low then a
zero voltage is induced at the corresponding pin.
Although the current supplied from the user port

798 THE HOME COMPUTER ADVANCED COURSE

data pins cannot directly drive external devices, it
can be used to trigger a relay system that allows
larger voltage and/or current ver to be
switched on or off.
When a pin is set for input (DDR bit=0) then

the method of operation is rather different. In this
case the corresponding bit in the data register 1s
held high, only going low if the pin is connected to
earth. This fact can be used to monitor events in
the outside world by connecting one side of a
simple switch to a data pin and the other side to
the user port earth. When the switch is thrown, the
data pin connects with earth and _ the
corresponding bit in the data register undergoes a
transition from high to low. This change in the data
register can be easily detected by software that
monitors the state of the data register and so the
flow of program control can be altered externally.

The eight data lines and the earth must be
connected in some way to each device in the user
port system and so the entire system is designed
around a common nine-line bus, each device
tapping into the appropriate lines for its particular
needs. This common bus is fed to each device by a
12-way ‘minicon’ connector. By wiring a male
connector on the ‘in’ side and a female on the ‘out’
side of each device we can ‘daisy-chain’ any
combination of system parts together. :

In this instalment the operation of each module
in the system is summarised and a circuit diagram
given. For full constructional details and parts lists
refer to the original articles.

CIRCUIT DIAGRAMS BY LIZ DIXON

a

i

E
N

S
A

S
S

A

T
S

e
e

9
0
0
0
0
0
8

THE HOME COMPUTER ADVANCED COURSE. 799

i | | | ! | i |

SA
NO

f NIAI

TT
UN

NI
MS

W
NV
I

800 THE HOME COMPUTER ADVANCED COURSE

ee
oe

Here, courtesy of Zilog Inc., we reproduce a further part of the Z80 programmers’ reference card.

Input and Output Groups

Reverie @sseie)

PORT ADDRESS

IMMED.| INDIR.

OV cote Cree

SOURCE

REGISTER IND.

INPUT ‘IN’ ADDRESSING
‘QUT!’-OUTPUT Inc HL,
Dec b

‘OTIR’-OUTPUT, Inc HL, REG.
INPUT Dec B, REPEAT iF B+0 IND.

DESTINATION BLOCK

‘QUTD'-OUTPUT Dec Hi | REG. oe OUTPUT
Dec B IND __ AB _ | commanos

Co oor ee | ee | =
Dec B

een en”

‘INIR’-INP, Inc HL, ee

4ND’-INPUT & INDIRECT COMMANDS ADDRESS

Dec HL, Dec B

‘INDR’-INPUT, Dec HL |
Dec B, REPEAT IF B+0

Symbolic Flags 16) oxerore[:) No.of No.of M No.of T
Mnemonic Operation S) H PIV N C 76 543 210 Hex Bytes Cycles States Comments

IN A, (n) A — {n) ° Be UU UC 11 011 O11 DB & 3 1] nto Ag — A7
-— : | Acc to Ag ~ Aji5

IN r, (C) i (6) | tC 1 =) 2 3 12 Cto Ag ~ Az
ifr = 110 only the O1 + 000 B to Ag ~ Ais

flags will be affected

INI Go © x Cz 10 ot Ce 4 16 Co
B 8 10 100 010) —Ae B to Ag ~ Ai5
HE — HL + 1 «©

INIR co © x sz 5 21 Cos 3,
B-—- B-1 ve 168 6 @ B2 (if B#0) B to Ag ~ Ais
HL - HL 4 1 . 2 4 16
Repeat until | 6)
B = 0

IND (HL) — (C) © x ...—Oi<COizCOrrCOC@sSsS=SsSs=ss=< COs rst “CCiCB 4 16 C to Ag ~ Az
B-—B-—1 10 101 010 AA B to Ag — Ais
HL — HL 1

INDR fee) (©) x we eee =D) 2 5 2) C10 Ao ~— A7
B- B-I 10 111 010 BA (lf B#0) B to Ag — Ai5

HL — HL—1 2 4 i)

Repeat until (jf B=0)

BO
OUT (n), A (n) — A ° > © FF Ff a oe Oy D3 2 3 11 nto Ag ~ A7

- - Acc. to Ag ~ Ais
OUT (C), & (| 0 KX © XxX © £€ 6 11 101 101 i= 8) 2 3 12 C to Ao ~— A7

Oi +f OO} B to Ag ~ Ais

OUT (Ce) (at) x X § & KX Ue 11 0) 8) 2 4 16 C to Ag ~ AZ
B- B-] 10 100 O11 A3 B to Ag ~ Ai5
HE — HL + |

OTIR (C) — (HL) x w = =. . 5 21 Cie Sy,
B-B-] 10 110 O11 B3 (if B#0) B to Ag ~ Ai5
HL — HL + 1 2 4 16

Repeat until (if B = 0)

Bee

OUTD © Go x —. 140 101 4 16 Co
B- B-1 10 101 O11 AB B to Ag — Ais

HL — HL—1

OTDR (@) (ae) x ~ % X§ Xs 11 101 10% ED 2 5 21 C to Ag ~— A7

B- B-1 10 111 O11 (S40) B to Ag — Ais

HL — HL-1 2 4 16

Repeat until ies! 8)

Be U

NOTE Git the result of B — 1 is zero the Z {lag |s set, olherwise | 's resel

Flag Notation. e flag not affected, 0 = flag reset, 1 = flag set, X = flag is unknown,
iE Hl { flag is affected according to the result of the operation.

